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Abstract 

Moral reasoning is important to model accurately as AI 
systems become ever more integrated into our lives. Moral 
reasoning is rapid and unconscious; analogical reasoning, 
which can be unconscious, is a promising approach to model 
moral reasoning. This paper explores the use of analogical 
generalizations to improve moral reasoning. Analogical 
reasoning has already been used successfully to model moral 
reasoning in the MoralDM model, but it exhaustively 
matches across all known cases, which is computationally 
intractable and cognitively implausible for human-scale 
knowledge bases.  We investigate the performance of an 
extension of MoralDM to use the MAC/FAC model of 
analogical retrieval over three conditions, across a set of 
highly confusable moral scenarios.  

 Introduction   

Research on moral reasoning and decision-making in 

humans has revealed that certain moral decisions are based 

on moral rules rather than utilitarian considerations. These 

rules are concerned with the morality of actions rather than 

their outcomes (Baron and Spranca 1997). Furthermore, 

people are sensitive to structural differences, leading us to 

make different judgments even when considering cases that 

seem similar on the surface. Consider these two scenarios 

(from Waldmann and Dietrich 2007) below: 

 

Bomb 1: “In a restaurant, a bomb threatens to kill 9 

guests. The bomb could be thrown onto the patio, 

where 1 guest would be killed [but the 9 would be 

spared].” 

 

Bomb 2: “In a restaurant, a bomb threatens to kill 9 

guests. One [separate] guest could be thrown on the 

bomb, which would kill this one guest [but the 9 

would be spared].” 
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 Despite the two scenarios having strong surface and 

structural similarities as well as identical utilitarian 

considerations, participants in this study generally said that 

taking the proposed action was morally acceptable in the 

first scenario but not in the second scenario. 

 In addition to making non-utilitarian moral decisions, 

humans tend to be able to judge the moral value of actions 

and situations quickly and with little conscious reasoning; in 

fact, there is evidence that justifications for moral judgments 

come after the judgment has been made (Haidt 2001). 

Furthermore, research suggests that our moral rules are not 

innate or learned by rote, but are acquired culturally from 

exposure to moral narratives (Darley and Shultz 1990). 

These features suggest that purely first-principles, rule-

based reasoning is not sufficient to account for moral 

reasoning. 

 Analogical reasoning involves comparing structured 

cases. Analogical reasoning can be unconscious (Day and 

Gentner 2003), and is therefore an intriguing approach for 

modeling moral decision-making.  However, analogical 

retrieval often results in a match with strong surface 

similarities, rather than structural or relational similarities, 

although experts do not show this pattern (Novick 1988). 

This poses a problem for cases such as the two bomb 

scenarios, since each scenario is most surface-similar to the 

other, and therefore the likely target of a match for someone 

who knows one scenario and is evaluating the other.  

 A potential solution is to use analogical generalizations, 

built from similar-enough exemplars, which emphasize 

what is common between them while deprecating facts 

unique to individual exemplars. If presented in an order 

conducive to assimilation, generalizations will be formed on 

the basis of higher-order relations shared across cases 

(Kuehne et al. 2000); as the generalizations grow, these facts 

become more important than facts unique to cases. The 

Sequential Analogical Generalization Engine (SAGE), has 

 



been shown to facilitate analogical reasoning (McLure, 

Friedman, and Forbus 2010; Chang and Forbus 2013).   

 This paper shows how reasoning by analogy using 

generalizations of solved moral scenarios, rather than across 

those individual cases, leads to better performance as the 

size of the training case-library grows. Forming these 

generalizations is important as it may better represent the 

way we learn and reason about moral dilemmas. It will 

eventually be important for autonomous moral reasoning 

systems to learn moral rules, not just be told them. Firm 

rules can be brittle and contradict each other (Iliev et al. 

2009), yet humans do not stop making consistent moral 

decisions; our systems need to learn and reason the same 

way we do in moral domains if we are ever to trust them to 

make the right decision in high-stakes environments, such 

as driving a car on the highway.  

 This work is a continuation of research done on 

MoralDM, a model of moral judgment (Dehghani et al. 

2008a, Dehghani et al. 2008b). We begin by reviewing the 

relevant psychological background and findings on moral 

decision-making and analogical reasoning. Next we briefly 

describe previous work on MoralDM. Then we show how 

an analogy-only adaptation of that system performs using 

four analogy-based conditions across different sizes of case 

libraries. Finally, we discuss future work. 

The Psychology of Moral Decision-Making 

The four findings most relevant to the present study are: 

1) Protected Values 

To account for the non-utilitarian choices people often seem 

to prefer when making moral judgments, researchers have 

proposed the existence of Protected Values (PVs), or Sacred 

Values (Baron and Spranca 1997; Tetlock 2000). These PVs 

concern actions rather than outcomes. Most people seem to 

have a PV “it is wrong to kill a person”; it is the act of killing 

itself, rather than the consequence of a person being dead, 

that violates the PV, and is therefore morally forbidden.  

2) Principle of Double Effect 

The first bomb scenario above seems to contradict the idea 

of PVs, since throwing the bomb onto the patio is taking an 

action that violates a PV. Tossing the bomb is acceptable 

because of the Principle of Double Effect (PDE). PDE (Foot 

1967; Thomson 1985) states that harm caused as a side 

effect of preventing a greater harm is permissible, but harm 

caused in order to prevent a greater harm is forbidden. If 

you decide to throw the bomb on the patio, you are not trying 

to kill the person on the patio, only trying to get the bomb 

away from the nine people inside. The death of the one 

person outside is an unfortunate side effect. If, however, you 

throw the person on the bomb, then the death of the one is 

causally necessary to the saving of the nine: the harm caused 

is used as the means to avoid the harm prevented. PDE has 

recently been criticized in light of findings that seem to 

contradict its formulation of harm as means vs. side effect 

(e.g., Greene et al. 2009). However, for the current study 

PDE provides the simplest and most comprehensive account 

of the results we simulate. 

3) Moral Rules Are Acquired From Culture 

There is scientific consensus that we acquire our moral rules 

and senses of right and wrong from culture (Prasad 2007; 

Dehghani et al. 2009) and in stages (Kohlberg 1973). The 

particular rules vary with culture: for example, many 

Americans see desecrating the U.S. flag as a moral violation; 

non-US citizens do not.  The cultural acquisition of moral 

rules is important for AI because it gives us a model of 

learning to apply in order to learn moral rules. Certainly 

children are told “killing is wrong”, but they are also told 

why it is wrong; we learn right from wrong by examining 

the similarities and differences among the many cultural 

narratives we are exposed to that concern moral rules 

(Gentner and Medina 1998). It is from these cultural 

narratives that the rules arise; if we are to build an effective 

cognitive simulation of moral decision-making, such a 

model would need not only to be able to make decisions like 

those of different people based on the PVs they hold, but to 

extract those PVs from the cultural narratives those people 

learned them from. The present study takes an important 

step in that direction. 

4) Moral Decisions Are Fast and May Be Subconscious 

People are able to make moral decisions extremely quickly 

(Haidt 2001). When presented with a choice we can often 

say almost instantly whether it is morally permissible. Non-

utilitarian moral judgments stay fast under cognitive load 

(Greene et al. 2008), and justifications for the morality of an 

action often come after the judgment has been made (Haidt 

2001). The speed and subconscious nature of these 

judgments suggests analogical, rather than first-principles, 

reasoning. Analogical reasoning has previously been used to 

successfully model automatic and rapid reactions (e.g., 

Wilson, Forbus, and McLure 2013).   

Analogy and Decision-Making 

Analogy has been demonstrated to be an important tool in 

reasoning and decision-making; we use our past experiences 

and draw inferences from previous choices in choosing what 

to do (Markman and Medin 2002). One of the primary 

models of analogical reasoning and inference in humans, 

structure mapping theory (Gentner 1983), involves finding 

an alignment, or shared relational structures, between two 

descriptions. Items present in one description and not in the 

other are postulated as candidate inferences. Analogical 

decision-making involves identifying the decision from the 

retrieved case and making the analogous decision in the new 

case.  

 We have a huge amount of experience; how do we decide 

what, from our long-term-memory, is the proper case to 



reason from analogically? Research has demonstrated that 

surface similarity between a case in long-term-memory and 

the target case being evaluated increases the likelihood of it 

being retrieved; on the other hand, structural similarity 

between those cases retrieved and the target case is the best 

predictor for inference (Forbus, Gentner, and Law 1994; 

Gentner, Rattermann, and Forbus 1993). That is, surface 

similarity defines what stories we retrieve from memory, but 

structural similarity defines which of those stories we reason 

from. Next, the analogical models used here are described.  

The Structure Mapping Engine 

SME, the Structure Mapping Engine (Falkenhainer, Forbus, 

and Gentner 1989), is a computational model of analogy and 

similarity based on Gentner’s (1983) structure mapping 

theory. SME takes in two structured, relational cases, a base 

and a target, and computes up to three mappings between 

them. Mappings include the correspondences between 

expressions and entities in the two cases, candidate 

inferences suggested by the mapping, and a similarity score. 

The similarity score is normalized by dividing it by the score 

of the mapping from the target to itself. 

MAC/FAC 

Running SME across every case in memory would be 

prohibitively expensive and cognitively impossible for 

human-scale memories. MAC/FAC (Forbus, Gentner, and 

Law 1994) takes in a probe case like those used by SME as 

well as a case library of other such cases. MAC/FAC 

efficiently generates remindings, which are SME mappings, 

for the probe case with the most similar from the case 

library. MAC/FAC proceeds in two stages. In the first stage, 

it computes dot products between content vectors of the 

probe and each case in the case library. This process is fast, 

coarse, and serves as a model of retrieval based on 

similarity. Up to the three most similar cases from the first 

stage are passed on to the second stage (fewer than three are 

passed on if scores are not close enough to the best match). 

In the second stage, SME calculates mappings between each 

retrieved case and the probe. The three best mappings are 

returned as MAC/FAC’s output. Fewer than three are 

returned if not close to the score of the best mapping. 

The Sequential Analogical Generalization Engine 

The Sequential Analogical Generalization Engine (SAGE) 

is a computational model of analogical generalization. 

SAGE is a descendent of SEQL (Kuehne et al. 2000), 

extended with probabilities (Halstead and Forbus 2005). 

Within a particular generalization context, which is a case 

library composed of generalizations and ungeneralized 

exemplars, cases are either assimilated based on similarity 

into generalizations, or left ungeneralized if they are too 

dissimilar to the rest.  

 When a case arrives, SAGE uses MAC/FAC to retrieve 

remindings from the generalization context using the new 

case as a probe. If the similarity score from the top 

reminding is above the similarity threshold, the case is 

assimilated into the retrieved generalization. If not, it is left 

as an ungeneralized exemplar, but future cases may merge 

with it to form new generalizations. 

 SAGE creates generalizations from cases that include all 

the facts across all those cases, with non-identical 

corresponding entities replaced by abstract entities, and 

assigns to each fact a probability that reflects the frequency 

with which it was present in the assimilated cases. A fact 

with probability 1/n indicates that it is only true in 1/n of the 

cases. When a new case is assimilated the probabilities are 

updated. In creating SME mappings between cases and 

generalizations, only facts above a predetermined 

probability cutoff are used. This means that facts specific to 

only a few cases end up being unimportant when doing 

analogical reasoning against that generalization, and that as 

the number of assimilated exemplars grows, the 

generalization becomes more representative of the shared 

structures of its constituent cases. 

MoralDM 

MoralDM (Dehghani et al. 2008a,b) solved moral dilemmas 

using two reasoning systems: first-principles reasoning, 

based on established psychological moral reasoning 

principles including PVs and PDE, and analogical reasoning 

against solved cases. The solutions to moral dilemmas 

depend on the particular moral norms of the person making 

the decision and are therefore inherently subjective, yet 

within particular cultures and groups overall trends do 

emerge; we take the majority decision of participants in the 

original study as being correct.  

 MoralDM used a combination of first-principles rules and 

analogical reasoning to detect PVs.  It compared a new 

dilemma with all known cases using SME, before any first-

principles reasoning was done, and picked the choice 

suggested by the most cases (or the most similar, in case of 

a tie). While guaranteeing the best precedent will be found, 

this approach would not scale to human-sized memories. If 

only first-principles reasoning or analogical reasoning 

suggested a choice, that choice was the output.  If the two 

systems disagreed, first-principles reasoning was chosen 

over analogy.  Our extension starts with some first-

principles reasoning to establish PVs and other facts to 

prime comparisons, then uses analogy.  It extends MoralDM 

by using MAC/FAC to retrieve cases, and SAGE to 

construct generalizations from cases.  It also adds a stronger, 

domain-independent consistency check.  That is, it tests to 

see if a candidate inference is already known to be false in 

the target, and if so, ignores the match.  Dehghani’s original 

MoralDM used a comparison between qualitative order of 

magnitude estimates as a domain-specific test for candidate 

inferences. 



Experiment  

For MoralDM to have relevant facts to compare, it has to do 

a small amount of explicit reasoning. It uses rules to 

determine whether a choice involves a PV, and ascertains 

the number of individuals affected by each choice. It checks 

whether the choice is an action or omission: consequences 

being equally bad, humans prefer inaction to action (Ritov 

and Baron 1999). Finally, it checks whether the action 

prevents some alternative negative outcome, and if so, 

whether the action directly prevents the negative outcome 

(i.e., as a means or side effect, which is relevant to PDE). 

Ultimately these facts, too, might be learned via analogical 

generalization, but that is future work. 

 We compared the performance of four conditions: (1) 

MAC/FAC over SAGE generalizations, (2) MAC/FAC over 

the union of generalizations and cases, (3) MAC/FAC over 

cases alone; and (4) Best SME match.  For brevity, we refer 

to these as M+G, M+GC, M+C, and BestSME, respectively.  

BestSME serves as a baseline: since it is exhaustive, it 

should always provide the most accurate match.  The 

training and test sets were drawn from eight trolley-like 

problems from Waldmann and Dieterich’s (2007) study, 

which were converted from simplified text to formal 

representations using EA NLU (Tomai 2009), and were 

slightly modified by hand (to indicate, for example, that 

when a trolley hits a bus, the bus’ passengers die). The 

training cases are identical to those we test, with two extra 

facts: one indicating the correct choice, and one justifying 

that choice. Here is an example: 
 

(implies 

  (and 

    (protectedValueChoice throw18421) 

    (protectedValueChoice Inaction18657) 

    (uninferredSentence 

      (affectsSigLargerGroup throw18421)) 

    (uninferredSentence  

      (affectsSigLargerGroup Inaction18657)) 

    (directlyResponsible you18016 throw18421) 

    (uninferredSentence  

      (directlyResponsible you18016 

                           Inaction18657)) 

    (preventsAlternativeNegativeOutcome 

                           throw18421) 

    (uninferredSentence 

      (usedAsMeansToPreventNegOutcome 

                           throw18421))) 

  (rightChoice throw18421)) 

 

(makeDecision you18016 throw18421)) 

  

The antecedents of the implication are derived during the 

precomputing phase, whereas the makeDecision fact is 

what is being inferred analogically. Note that the extra facts 

we provided our model in the solutions were not so 

differentiated as to provide the system with categories. For 
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example, in the second bomb scenario, the added 

implication fact is structurally identical to first, except the 

final fact is not wrapped in “uninferredSentence” (indicating 

that the final fact is true in the second bomb scenario but not 

the first).  Additional information can be found in the on-

line supplemental material1. 

 We have other cases than the eight we tested but restricted 

ourselves to these for two reasons.  First, the other dilemmas 

(all drawn from psychological experiments) always have as 

the right answer “do nothing”, which means a system could 

perform well by chance.  Second, these eight cases consist 

of four matched pairs of cases which are highly confusable, 

sharing both surface and structural features. One case from 

each pair is an instance of PDE acceptability (like the first 

bomb scenario); the other is not. Each scenario therefore has 

three matches and four confounds, including one direct 

confound (i.e., the two bomb scenarios are each other’s 

direct confounds), making analogical reasoning tougher. 

Methods 

For each case we constructed training sets composed of all 

subsets of the other seven cases. The order of cases within 

training sets was randomized, as was the order of training 

sets (results are averaged by training set size, so order does 

not matter). For each trial, the model constructs 

generalizations using SAGE over the training set. The 

model performs MAC/FAC over these generalizations 

(M+G), over the ungeneralized cases (M+C), and over the 

union of generalizations and cases (M+GC), using the test 

case as a probe. After retrieval it performs a consistency 

check on the reminding: if a candidate inference 

hypothesizes something known to be false, then the 

mapping is rejected and the model moves to the next best. If 

it runs through all remindings it performs one additional 

retrieval over the case library without the rejected cases. If 

a candidate inference from the best consistent mapping is of 

the form (makeDecision ?actor ?action), it is treated 

as the solution to the dilemma. The model keeps track of 

both the answer and the number of consistency checks 

performed. 

 As a baseline, in the BestSME condition the model 

exhaustively performs SME matches between the test case 

and all cases in the library, using the highest match that 

passes the consistency check. We assume that this technique 

will return the most accurate outcome possible, as it 

guarantees the best consistent match. However, it is 

computationally intractable and cognitively implausible to 

match a case against every single case stored in memory for 

human-scale memories.  We compared the BestSME match 

results to Dehghani et al.’s (2008a, experiment 3) findings 

across the same eight test cases. Note that, because of the 



nature of our consistency check, our four experimental 

techniques are unable to get the wrong answer (i.e., 

postulate a fact known to be false). These modules could 

either get the right answer, or no answer at all; our measure 

is therefore proportion correct.  

 We had the following hypotheses: (H1) Since moral rules 

concern underlying structures rather than surface features, 

M+G or M+GC will lead to better moral judgments as the 

size of the training case library increases. (H1a) All 

techniques will improve as the number of matching cases in 

the training set increases. (H1b) All techniques will worsen 

as the number of conflicting cases in the training set 

increases. (H2) With small case libraries M+G, M+C, and 

M+GC will perform equally well. As training sets increase 

in size, M+G will outperform M+GC, which will out-

perform M+C. (H3) M+G will get the right answer earlier 

than M+C or M+GC, i.e. requiring fewer consistency checks 

and performing fewer additional retrievals. (H4) BestSME 

will outperform Dehghani et al’s (2008a) version, due to its 

enhanced consistency check and initial reasoning. 

Results 

Across all trials, M+G performed as well as BestSME, with 

identical statistics. (Please consult the supplementary 

materials for details.)  Since BestSME is exhaustive, this 

indictates that M+G performs at ceiling.  

 We performed a logistic regression to determine the 

effects of experimental technique, case library size, and 

technique given case library size.  Case library size was a 

significant predictor of accuracy (Wald’s chi-square (χ2) = 

68.674, p<10-4, odds ratio (OR) = 3.6) and we found a 

marginal effect of experimental technique (χ2 = 3.69, p = 

0.055, OR = 1.4), as well as a significant interaction between 

experimental technique given number of training cases (χ2 = 

5.67, p<0.05, OR = 2.6.  Consistent with H1, there was a 

significant improvement in performance as training size 

increased across all conditions (M+G: r=0.4, p<10-4; M+C: 

r=0.32, p<10-4; M+GC: r=0.295, p<10-4) (Figure 1). 

Because BestSME and M+G performed identically, their 

lines on Figure 1 overlap perfectly.  Dehghani and 

colleagues (2008a) found similar improvement with number 

of training cases for BestSME (r=0.97, p<10-4) using their 

consistency check, although BestSME was at most 75% 

accurate in that study. Our correlations were all significantly 

different from each other (p<0.05, using the Fisher r-to-z 

transformation), except for M+G vs. M+GC. In accordance 

with H1a, performance improved as the number of matching 

cases in the training set increased (M+G: r=0.64, p<10-4; 

M+C: r=0.61, p<10-4; M+GC: r=0.57, p<10-4). Consistent 

with H1b, M+C and M+GC worsened with number of 

                                                
2 Condition is not a continuous variable; the coding we used for the purpose 

of analysis is 1 = M+G, 2 = M+GC, 3 = M+C. 

confounds (both r=-0.11, p>0.001) but contrary to H1b 

M+G and BestSME did not worsen (p = 0.08).  

 Given that in our logistic regression we found a marginal 

main effect of condition and a significant interaction 

between condition and number of training cases, we decided 

to evaluate H2 by performing logistic regressions separately 

over trials using large (5-7 cases) and small (1-4 cases) case 

libraries. In accordance with H2, condition did not predict 

performance with case libraries of up to size 4, although 

there was still an effect of case library size (χ2 = 278.29, p < 

10-4, odds ratio = 3.2). For case libraries of sizes 5-7, 

however, there was a significant relationship between 

condition and performance (χ2= 6.55, p < 0.05, odds ratio 

0.5)2, and no effect of case library size. We performed t-tests 

to determine the relative performance of each condition and 

found that BestSME and M+G outperformed both M+GC 

and M+C (p<0.0167). Note that with a case library of size 

seven, BestSME, M+G, and M+GC all performed perfectly. 

Contrary to H2, M+GC did not significantly outperform 

M+C with large training case libraries. 

 As predicted in H3, M+G required significantly fewer 

consistency checks than M+C or M+GC; M+C required 

significantly fewer checks than M+GC (all p<10-4) (Figure 

2). Being exhaustive, BestSME with the new consistency 

check, as well as with Dehghani et al.’s (2008a) consistency 

check, always performed as many consistency checks as 

there were training cases. These data are not displayed in 

Figure 2. There was a significant increase in consistency 

checks as the training set increased in size for M+GC 

(r=0.12, p<10-4), and M+C (r=0.25, p<10-4), but not M+G. 

Additionally, M+G and M+GC required an additional 

retrieval 25% of the time; M+C required an additional 

retrieval 35% of the time (a significant difference, p<10-4).   

 Finally, as predicted in H4, our new consistency check led 

BestSME to outperform the original MoralDM. With case 

libraries of size 1-6, our technique significantly 

outperformed the previous technique (all p<10-4); with case 

Figure 1: Accuracy by Number of Training Cases 
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library size 7 the result was not significant (p=0.07). We 

believe that this is because there are only eight cases with 

training size 7, since each such case requires all other cases 

to be in the training set, and that if the sample size were 

increased the difference would become statistically 

significant. For further information on our statistical 

analyses as well as an exploration of why performance of 

M+C improves with medium case library size and worsens 

with larger case libraries, consult our supplementary 

materials. 

Discussion and Future Work 

With only eight test cases and a maximum case library size 

of seven, all of which concern PDE, this experiment was 

performed on a highly restricted domain.  We consider our 

results preliminary, but they suggest that analogical 

reasoning across generalizations of solved moral dilemmas 

is a more faithful model of human moral reasoning than 

analogical reasoning over ungeneralized cases, given its 

high accuracy and that it consistently got the correct answer 

on the first or second retrieval. This is consistent with the 

psychological finding that moral judgments develop over 

time from the acquisition of cultural narratives. Of course, 

human moral capacities develop over a longer period of time 

and with exposure to many more than seven stories; our 

system performs well with a small case library due to the 

simplicity of its representations, concentrated experience, 

restriction to PDE, and pre-defined PV rules. As with 

humans, many of whom cannot articulate PDE but 

nonetheless abide by it, our system followed the rule of PDE 

without being given it explicitly. Rather, SAGE was able to 

recognize which scenarios were acceptable PDE or not, and 

when a new scenario came in, effectively make inferences 

based on the relational structure, rather than surface 

features. 

 We believe analogical reasoning across generalizations 

(M+G) eventually outperformed reasoning across cases 

(M+C) because irrelevant surface features (such as the 

mechanism of action being a bomb instead of a trolley) fell 

away, leaving overall structural similarities and 

justifications. When reasoning using generalizations, there 

were fewer surface features to mislead MAC/FAC into 

making a faulty match. These findings seem consistent with 

humans, who might hear several different stories illustrating 

the same moral principle and eventually view them as 

instances of that principle, not only exemplars. The 

principles at work and justification for the outcome then 

become more important than the details of the story, and 

lead to better moral judgments. As in Winston (1981), 

SAGE generalizations behave as pseudo-rules; in contrast to 

that work, however, generalizations do not have to be 

extracted into an explicit “if-then” formulation, nor did 

SAGE need to be explicitly told what to use as a precedent 

in analogical reasoning, for a match to happen properly and 

produce the appropriate conclusion.  

 Reasoning by analogy to generalizations performed as 

well as the BestSME match across all cases (the best 

possible performance). Reasoning by analogy to the union 

of generalizations and cases was also highly accurate, 

although it required a large number of consistency checks 

which increased with case library size. Given the high 

accuracy of these techniques and the computational 

intractability of exhaustively matching across all cases in 

human-scale memory, we conclude that reasoning by 

analogy to generalizations is potentially an excellent 

technique for solving moral dilemmas by analogy.  

 Finally, our pump-priming reasoning and consistency 

check made Best SME more accurate than Dehghani et al.’s 

(2008a) findings across the same dataset. Furthermore, the 

updated consistency check is applicable to any analogical 

retrieval, whereas Dehghani et al.’s (2008a), was specific to 

the moral domain. 

 As the corpus of findings and moral narratives grows, it 

will be important to see how well this model scales. We plan 

to expand the pool of training cases, ideally beyond 

psychology-study-style moral dilemmas and into cultural 

narratives such as Aesop’s fables. We also plan to expand 

upon Dehghani et al.’s (2009) work, to simulate how 

different cultural narratives lead to different moral 

decisions. Recently psychologists have shown how taking 

on different roles, each with their own associated narratives 

and duties, leads to different moral judgments (Sachdeva, 

Singh, and Medin 2011), which is also worth exploring 

computationally. 
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